Diagnostic et maintenance prédictive par IA
Master Physique appliquée et ingénierie physiqueParcours Mécatronique, énergie et systèmes intelligents
ComposanteFaculté de physique et ingénierie
Catalogue2024-2025
Description
- Représentation et analyse de données, généralisation sur l’apprentissage ;
- Méthodes de classification directe ( k-plus-proches-voisins, …) ;
- Apprentissage non supervisé et à l’apprentissage supervisé ;
- SVM ;
- Modélisation par réseaux de neurones ;
- Etude de cas en sciences pour l’ingénieur : TP à l’aide d’un logiciel d’intelligence artificielle.
Compétences visées
Ce cours aborde des méthodes modernes d’apprentissage artificiel telles que les réseaux de neurones, les Machines à Vecteurs Supports et les classifieurs.
Ces algorithmes sont au cœur de nombreuses applications et connaissent un essor fulgurant : analyse automatique d’images, reconnaissance de la parole, reconnaissance d’évènements, robotique, conduite automatique...
Bibliographie
- Cornuéjols, A & Miclet, L. (2010) "Apprentissage Artificiel. Concepts et algorithmes", Eyrolles (2nd. Ed.).
- Boi Faltings, Michael Schumacher, "L'intelligence artificielle par la pratique", Presses Polytechniques et Universitaires Romandes (PPUR), 2017 (2e édition).
Contacts
Responsable(s) de l'enseignement
MCC
Les épreuves indiquées respectent et appliquent le règlement de votre formation, disponible dans l'onglet Documents de la description de la formation.
- Régime d'évaluation
- CT (Contrôle terminal, mêlé de contrôle continu)
- Coefficient
- 1.0
Évaluation initiale / Session principale - Épreuves
Libellé | Type d'évaluation | Nature de l'épreuve | Durée (en minutes) | Coéfficient de l'épreuve | Note éliminatoire de l'épreuve | Note reportée en session 2 |
---|---|---|---|---|---|---|
Comptes rendusmoyenne des comptes rendus | CC | R | 1.00 |