Statistical mechanics

Statistical mechanics
Master PhysiqueParcours Cell Physics

Catalogue2026-2027

Description

The aim of this course is to use the statistical physics tools developed in L3 to describe complex systems in modern physics, such as quantum ideal gases (Bose-Einstein condensation, for example) and interacting systems (Ising model, liquid-gas transition, electrolyte, etc.). 

Compétences requises

Have taken a basic course in equilibrium statistical physics. Knowledge of and ability to manipulate the formalism of microcanonical and canonical sets for systems without interactions (e.g. perfect gas, paramagnetism, etc.).

Compétences visées

  • Applying knowledge in physics;

  • Apply methods from mathematics and digital technology;

  • Produce a critical analysis, with hindsight and perspective;

  • Research a current physics topic using specialised resources;

  • Communicate in writing and orally, including in English.

Syllabus

 I-Perfect quantum gases

I.1 Perfect Fermions gases: high-temperature limit, degenerate Fermi gas, low temperature development of Sommerfeld, classical limit;

I.2 Perfect Bosons gases: high-temperature limit, Bose-Einstein condensation, black-body radiation.

II-Systems in interactions and phase transitions: the Ising model

II.1 Introduction to the Ising model: definition and general relations, mean field theory, critical exponents.

II.2 Exact solutions at 1d and 2d;

II.3 Correlation function in the mean field approximation;

II.4 Landau theory.

III-Classical fluids

III.1 Classical fluids, multi-point correlation functions, pair correlation function;

III.2 Viriel development;

III.3 Electrolytes and plasmas: Debye-Hückel model.

Bibliographie

  • Introduction to Modern Statisticam Mechanics, D. Chandler, Oxford University Press.
  • Elements de Physique statistique, B. Diu, C. Guthmann, D. Lederer, B. Roulet, Hermann.
  • Statistical Mechanics, Shang-Keng Ma, World Scientific.
  • Equilibrium Statistical Physics, M. Plischke and B. Bergersen, World Scientific.
  • Des Phénomènes Critiques aux Champs de Jauge, M. Le Bellac, Savoirs Actuels, InterEditions/Editions du CNRS.
  • Introduction to Phase Transition and Critical Phenomena, H. Stanley, Oxford Sci. Publications.
  • The Theory of Critical Phenomena: an Introduction to the Renormalization Group, J. J. Binney, N. J. Dowrick, A. J. Fisher and M. E. J. Newman, Oxford Science Publication.

Contacts

Responsable(s) de l'enseignement