UE 2 - Semestre 1 - Numerical resolution techniques for engineering
Master Physique appliquée et ingénierie physiqueParcours Mécatronique, énergie et systèmes intelligents
Description
- Numerical resolution of linear systems of equations: direct methods (LU, Cholesky), iterative methods (Jacobi, Gauss-Seidel, relaxation, Krylov spaces, conjugate gradient). Sparse matrices.
- Numerical resolution of non-linear systems of equations : Picard’s iterations, Newton and quasi Newton methods.
- Numerical resolution of differential equations. One-step methods (Runge-Kutta). Multi-step methods. Stability notions.
- Stiff problems, implicit methods.
- Programming langage : C/C++ ; python.
Compétences visées
- choose the numerical resolution technique best suited to solve a given engineering problem.
- know how to use numerical techniques.
- understand how numerical tools work.