Electronics for quantum science and technology

Electronics for quantum science and technology
Master PhysiqueParcours Cell Physics

Catalogue2025-2026

Description

Introductions to the basic concepts of mesoscopic physics and electrical transport phenomena for nanoscale dimensions. This course is an introduction to electronic transport and quantum effects that appear in nanostructures at low temperatures. Concepts of classical and quantum transport are presented, as well as a number of experimentally observed phenomena and their theroretical description.

The discussed quantum phenomena in solid state devices are an extension of the courses on solid state physics and quantum mechanics. The subject is relevant for the second year programs that focus on quantum sciences and condensed matter, as QTEP and in particular PhyQS, where the course on Advanced Quantum Mechanics continues the subject of electronic quantum transport in nanostructures and prepares the students for research in moderns aspects of solid state physics.

At the end of the lecture, students will:

  • be familiar with some of the concepts of classical and quantum electronic transport in condensed matter.
  • be able to apply those concepts in basic situations of transport through nanostructured devices.
  • To know phenomena of quantum mesoscopic physics that appear in quantum electronic transport at the nanoscale and at low temperatures.

Compétences requises

To follow the course, the required competences are the ones that are needed to enter the master program in physics. They include a knowledge of the basic concepts of  classical and quantum mechanics should be known. Some notions of statistical physics and elements of solid state physics are also helpful.

Compétences visées

•    Applying knowledge in physics;

•    Apply methods from mathematics and digital technology;

•    Produce a critical analysis, with hindsight and perspective;

•    Interact with colleagues in physics and other disciplines;

•    Research a physics topic using specialised resources;

•    Communicate in writing and orally, including in English;

•    Respect ethical, professional and environmental principles in the practice of physics.

Syllabus

  1. Introduction to electronic transport: Reminder of classical transport, length scales, mesoscopic regime, conductance fluctuations.
  2. Phase-coherence effects and quantum approaches to transport, Landauer-Büttiker formalism.
  3. Low-dimensional conductors: two-dimensional electron gases, quantum wires, quantum dots.
  4. Conductance quantization in quantum wires and quantum point contacts.
  5. Quantum Hall effect and topological effects in quantum transport.

Bibliographie

• Y. Imry: Introduction to Mesoscopic Physics, Oxford University Press (1997)

• S. Datta: Electronic Transport in Mesoscopic Systems, Cambridge University Press (1995)

• S. Datta: Quantum Transport: Atom to Transistor, Cambridge University Press (2005)

• T. Dittrich et al.: Quantum Transport and Dissipation, Wiley-VCH (1998)

• Y. Nazarov & Y. Blanter: Quantum Transport, Cambridge University Press (2009)

Contacts

Responsable(s) de l'enseignement

MCC

Les épreuves indiquées respectent et appliquent le règlement de votre formation, disponible dans l'onglet Documents de la description de la formation.

Régime d'évaluation
CT (Contrôle terminal, mêlé de contrôle continu)
Coefficient
1.0

Évaluation initiale / Session principale - Épreuves

LibelléType d'évaluationNature de l'épreuveDurée (en minutes)Coéfficient de l'épreuveNote éliminatoire de l'épreuveNote reportée en session 2
Written exam
CTET1201.00

Seconde chance / Session de rattrapage - Épreuves

LibelléType d'évaluationNature de l'épreuveDurée (en minutes)Coéfficient de l'épreuveNote éliminatoire de l'épreuve
Written exam
CTET1201.00